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Lyapunov exponent, stretching numbers, and islands of stability of the kicked top
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Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, GR-11635 A

Greece
~Received 6 February 1997!

The Lyapunov exponent of the kicked top is evaluated as a function of the anisotropy parameter for a special
value of the magnetic field (p/2). A series of ‘‘wiggles’’ is found, which coincides with the stabilization of the
~Larmor! 4-cycle. The presence of islands of stability around of the 4-cycle is associated with distinct defor-
mations of the unstable manifold and a concomitant proliferation of negative stretching numbers; the latter are
thought to be responsible for the anomalous Lyapunov behavior.@S1063-651X~97!02611-1#

PACS number~s!: 05.45.1b, 75.10.Hk, 67.57.Lm
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I. INTRODUCTION

Any concise yet reasonably complete description of ch
in a dynamical system should, at least in principle, attemp
distinguish between the extent and intensity of chaos,
account separately for the prevalence of chaotic over non
otic behavior, and the degree of the instability that char
terizes chaotic behavior. Practical attempts to quantify ch
rely by necessity on global measures of chaotic behav
such as the Kolmogorov entropy or, at best, individu
Lyapunov exponents~LEs!. Such measures are generica
incomplete in an ‘‘order-within-chaos’’ situation: Whereas
long-time probe of nonlinear dynamics will in general r
spond to the existence of some atypical feature in an ot
wise chaotic regime, it cannota priori be used to identify its
nature~e.g., island of stability and sticky orbit!. Local mea-
sures of chaos on the other hand, are potentially very p
erful tools, probing dynamical behavior in phase space
allowing for a detailed analysis of atypical behavior.

The kicked top offers a unique opportunity to explore t
complementary nature of global vs local measures of ch
At a special value of the magnetic field (B5p/2) the com-
peting dynamics of Larmor precession~period 4! around the
x axis vs free rotation around thez axis ~dictated by the
anisotropy! give rise to an order-within-chaos scenario;
lands of stability for a ‘‘Larmor’’ 4-cycle develop for suc
values where the anisotropy parameter is ‘‘in tune’’ with t
magnetic field. The global probe~Lyapunov exponent! is
found to react to the existence of such islands, via sm
‘‘wiggles.’’ In order to investigate the nature of the relatio
ship between islands of stability and anomalies in cha
behavior, we have made use of local probes@stretching num-
bers~SNs! and their spectra~SSNs! @1##. Our findings sug-
gest that it is possible to identify distinct areas of the u
stable manifold that exhibit negative stretching numbers,
locally nonchaotic behavior; these areas typically surrou
an island of stability and underlie the appearance of
wiggles.

This paper is organized as follows. Section II presents
model and the calculation~numerical and theoretical! of the
LE. Section III deals with the spectra of stretching numb
and their relationship to the islands of stability, whereas S
IV discusses the relationship of the spatial distribution
~negative! SNs to the structure of the unstable manifold. S
tion V presents a brief discussion of our findings, along w
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some remarks on the feasibility of using the negative par
the SSNs as a general diagnostic tool for order-within-ch
situations.

II. LYAPUNOV EXPONENT AND ISLANDS
OF STABILITY

The Hamiltonian of the classical kicked top is given by

H5AJz
21BJx(

n
d~ t2n!, ~2.1!

whereA is the anisotropy andB the magnetic field, acting in
bursts separated by one time unit. The dynamics of the

angular momentum vectorJW , determined by

dJW

dt
52JW3

]H

]JW
, ~2.2!

leads to the discrete map

Jn11
x 5Jn

xcos~AJn11
z !2Jn

ysin~AJn11
z !cosB

1Jn
zsin~AJn11

z !sinB, ~2.3!

Jn11
y 5Jn

xsin~AJn11
z !1Jn

ycos~AJn11
z !cosB

2Jn
zcos~AJn11

z !sinB, ~2.4!

Jn11
z 5Jn

ysinB1Jn
zcosB, ~2.5!

whereJWn is the spin vector immediately prior to thenth kick.
The symmetries and periodic orbits of the map~2.3!–~2.5!
have been studied extensively@2,3#. In this section we will
compute, numerically and analytically, the~maximum! LE
and study its dependence on the presence of islands of
bility.

The tangent map corresponding to Eqs.~2.3!–~2.5! is
given by

dJWn115M ~JWn!dJWn , ~2.6!

where
5189 © 1997 The American Physical Society
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M ~JWn!5S ]JWn11

]JWn

D . ~2.7!

The largest positive LE~which in our system is equal to
the Kolmogorov entropy! is given by

l1~A,B!5 lnF lim
N→`

u j 1~N!u1/NG , ~2.8!

where j 1(N) is the largest eigenvalue of the matrix produ

Pn51
N M (JWn). In practice we have usedN;106 and obtained

the LEs with an accuracy of 1023, using standard procedure
~cf. @4#!. We are interested in the fully chaotic regime, f
B5p/2 and A@1. Chaotic regions are characterized by
single LE. The dependence ofl1 on A is shown in Fig. 1.
The result can be compared with a rough analytical estim
which is obtained as follows~cf. the analogous arguments b
Chirikov @5# on the kicked rotator!.

For orbits that are strongly chaotic, it turns out that

l̃1~A,B!5 lim
N→`

1

N (
n51

N

lnum1~JWn!u, ~2.9!

wherem1 is the largest eigenvalue of Eq.~2.7!, is a reason-
able approximation to Eq.~2.8!. On the basis of the ergodi
hypothesis, we may further substitute the time average in
~2.9! with the ensemble average over the whole sphere,

l̃1
th~A,B!5

1

4p E
21

1

dpE
0

2p

df lnum1~p,f;A,B!u,

~2.10!

wherep5Jz /J andf5arctan(Jy /Jx) are the canonical coor
dinates of our system. Finally, we make use of the appro
mation

m1~p,f;A,B!;AA12p2cosfsinB, ~2.11!

FIG. 1. ~Maximum! Lyapunov exponent as a function of th
anisotropy parameter for the kicked top.~B5p/2 has been used
throughout the paper!. The dotted line is the high-A approximation
described in the text.
t

e,

q.

i-

which is valid for largeA and any finiteB and follows in a
straightforward fashion from the~tangent! map in polar
form. Introducing the approximation~2.11! in Eq. ~2.10!, we
obtain

l̃1
th~A,B!; ln~AsinB!21, ~2.12!

displayed as a straight line in Fig. 1. What the approximat
~2.12! @or its ‘‘parent’’ versions~2.10! and ~2.11!# cannot
deliver are the slight undulations~wiggles! of the time-
averaged curve~2.8!. These can be investigated by conside
ing the stability of the periodic orbits of the mapping~2.3!–
~2.5!. The crucial orbit~for B5p/2, which will be assumed
in the rest of the paper! is a 4-cycle consisting of the point

JW1
~4!5S 0

0
1
D , JW2

~4!5S 0
21
0
D , JW3

~4!5S 0
0

21
D , JW4

~4!5S 0
1
0
D

~2.13!

~for all A!. The 4-cycle is stable if

~2 cosA1A sinA!224,0. ~2.14!

Figure 2 exhibits the island of stability aroundJW1
(4) ; Fig. 3

shows the first few wiggles in some more detail, along w
the regions of stability of the 4-cycle, as defined by E
~2.14!. It can be seen that the regions of stability of t
4-cycle coincide with position of dips in the LE; thus th
stabilization of a particular periodic orbit appears to be
sponsible for the decrease in the strength of the instab
~i.e., the LE! of the typical chaotic trajectory. The kicked to
thus offers a unique opportunity to investigate an ord
within-chaos scenario. In the next section, the more qua
tative aspects of the phenomena related to the appearan
stability islands will be examined with the help of the spe
trum of stretching numbers@1#.

FIG. 2. Stroboscopic plot of a typical chaotic trajectory (A
56.05); also shown are trajectories that correspond to an islan
stability around a 4-cycle.
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III. SPECTRUM OF STRETCHING NUMBERS
AND ISLANDS OF STABILITY

Lyapunov exponents, due to their emphasis on
infinite-time behavior, overlook useful dynamical inform
tion on the varying time scales and the distinct regions
phase space. For this reason, various groups@1,6–13# have
studied local Lyapunov exponents and their spectra. In
case of mappings, local Lyapunov exponents, defined as
deviation of two neighboring orbits in a single iteration, a
also known as stretching numbers, whereas the spec

FIG. 3. Lyapunov exponent and stability regions of the 4-cyc
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produced as an orbit evolves is known as the spectrum
stretching numbers@1#. An important property of the SSNs i
that the spectrum produced by a single orbit is invariant, i
independent of the orbit’s starting point; furthermore, it h
been shown@1# that orbits belonging to the same chao
region have the same SSNs, as is the case with the LEs

In terms of the tangent map@Eq. ~2.6!#, the stretching
number is given as

.

FIG. 4. Spectrum of stretching numbers for a typical regu
~left! and chaotic~right! orbit. The corresponding values of th
anisotropy are shown in the boxes.
an115 lnH udJWn11u

udJWnu
J ~3.1!

5
1

2
lnH 11

A2@12~Jn
y!2#~dJn

y!212A@Jn
zdJn

x2Jn
xdJn

z#dJn
y

udJWnu2 J , ~3.2!
in
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where in Eq.~3.2! we have made use ofB5p/2. It should be

noted that in practice one rescales the norm of the vectordJWn

after each iteration to the original valueidJWni . Since the

map and the tangent map conserve the productJWn•dJWn , the

rescaling has the effect that, even if we start with adJW0 that
has a component perpendicular to the sphere, this compo
will disappear after a few iterations.

The sequence of SNs$an%, n51, . . . ,N, of lengthN can
be characterized by its spectrum. IfdN(a) is the number of
SNs whose values lie in the interval (a,a1da), the SSNs is
defined as

S~a!5 lim
N→`

S dN~a!

Nda D . ~3.3!
ent

The LE is the first moment of the SSNs,l15*da a S(a).
Typical spectra for regular and chaotic orbits are shown
Fig. 4. The numerical computations were performed w
N5106 and da50.001. Computations with differentN
and/orda produced the same spectra, providedN is suffi-
ciently large (>105) and da sufficiently small (<0.01). It
should be noted that the chaotic orbit used to generate
right spectrum of Fig. 4 (A55) occupied essentially al
phase space, i.e., the islands of stability are not visible.
generic feature of SSNs obtained from chaotic orbits is
monotonically increasing trend as the value ofa increases;
there is no large peak at negative values ofa and of course
no reflection symmetry~which would produce a zero firs
moment!. Nonetheless, it will be seen that not all chao
SSNs are entirely structureless in their left~negativea! por-
tion; islands of stability do leave a detectable mark. In ord
to see this more clearly, we first present a detailed profile
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a wiggle; Fig. 5 exhibits the dependence of the Lyapun
exponent on the anisotropy nearA/p52. In order to obtain a
higher accuracy, this calculation has been performed w
N553106 iterations. The decrease ofl1 sets on atA55.85
and a local minimum appears atA56.05. We have obtained
the SSNs for values of the anisotropy parameter close top.
The results are shown in Fig. 6. Because the scale is
different for positive and negative values ofa, we have plot-
ted the salient features in the negative and positive axes s
rately. The point to note is that the local minimum ofl1

corresponds to the distinct peak in the negative region of
SSNs~and a concomitant dip in the positive region!. In other
words, even chaotic orbits may exhibit~weakly! ‘‘struc-
tured’’ SSNs on the negative side if the parameters al
some regular motion. The presence of islands of stabilit
thus reflected in chaotic orbits in a dual fashion:~i! in the

FIG. 5. Deviation of the LE vs anisotropy in the vicinity of th
stability region~shaded! of a 4-cycle@as defined by Eq.~2.14!#.

FIG. 6. Spectrum of stretching numbers for a number of val
near the stability region of the 4-cycle. Note that thex axis has been
split in order to emphasize details of positive SNs@right portion,
where most of the contribution to the LE~first moment! originates#
vs negative SNs~left portion, where the traces of nonchaotic beha
ior are more explicit; note, however, the difference of two orders
magnitude in they scale!. The area curves belong, respectively,
A55.0 ~black!, 5.85 ~gray!, and 5.0~light gray!.
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overall measure of chaos, the Lyapunov exponent, and~ii ! in
an observable anomaly in the negative part of the SSNs.

IV. STRETCHING NUMBERS AND THE STRUCTURE
OF THE UNSTABLE MANIFOLD

In this section we wish to pursue the relationship betwe
islands of stability and negative SSNs anomalies by exam
ing the structural characteristics of the latter. It is well know

that whatever the direction of the initial separationdJW0 of
two neighboring chaotic orbits, after a few iterations it b
comes virtually identical to the direction of the unstab
manifold of the unstable fixed point. It follows from Eq
~3.2! that the value ofa at the point that the orbit reaches o
thenth iteration depends on the position of the point in pha

space and on the direction of the difference vectordJWn in
tangent space, which after a few iterations coincides with
direction of the unstable manifold of the map’s unstab
fixed points~Jx561, Jy5Jz50! at that point. As the value
of A varies, the spectrumS(a) changes in response to th
changes that occur in the unstable manifold. This picture
supported by Fig. 7, which illustrates the structure of t
unstable manifold prior to the appearance of stability islan
~A55.5, Fig. 7, left! and shortly thereafter~A56.05, Fig. 7,
right!. The appearance of stability islands around the poin
periodic orbit results in an unstable manifold, which, abo
and below the stability island, is essentially parallel to theJy
axis. This allows the second term in the second set of la
curly brackets of Eq.~3.2! to dominate and favors, locally
the buildup of negative stretching numbers. The sudden
pearance of such regions results in the steep rise of nega
SSNs peaks against the exponentially vanishing backgro
~cf. Fig. 6, left!.

It is interesting to observe this in some detail, by follow
ing the topography of stretching numbers. In Fig. 8, right, w
have plotted the points of a chaotic orbit~for A56.05, i.e., at
the local minimum of the Lyapunov exponent! that corre-
spond to stretching numbersa,21.775. In other words, we
have identified the phase-space origin of the points that c

s

-
f

FIG. 7. Structure of the unstable manifold prior to~left, A
55.5! and after (A56.05) the stabilization of the 4-cycle. Also
shown in the right portion are typical regular trajectories around
4-cycle.
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tribute to the negative SSNs peak. This should be compa
with Fig. 8, left, which contains all points of a chaotic orb
with negative stretching numbers, obtained forA55.5 ~i.e.,
before the appearance of the stability island!.

It should be noted that the regions of phase space
give rise to the negative SSNs~the ‘‘Napoleon hats’’ in Fig.
8, right, above and below the stability island!, are relatively

FIG. 8. Topography of the SSNs. The anisotropy parameter is
in Fig. 7. Shown at the right are all points of a given trajectory th
are characterized by SNs lower than21.775; also shown is the
stability region of the 4-cycle. At the left~where the 4-cycle is still
unstable!, all points of a given trajectory with negative SNs ar
shown.
ed

at

far from the stability islands; the chaotic orbit has no dif
culty in passing through them, i.e., there is no complex str
ture in them, e.g., cantori or other stability islands, whi
might cause sticking effects and a delay of the orbit.

V. DISCUSSION AND CONCLUDING REMARKS

We have presented a model situation of an order-with
chaos scenario for the kicked top and analyzed the unde
ing nonlinear dynamics in terms of the anomalies in t
Lyapunov exponent and the spectrum of negative stretch
numbers. The detailed topography of the spectrum revea
direct connection between the occurrence of islands of
bility corresponding to periodic orbits, deformations in th
structure of the unstable manifold of the parent unsta
fixed point, and the local proliferation of negative stretchi
numbers.

Our results suggest that the presence of ordered reg
~stability islands! within an otherwise chaotic environmen
has a direct influence on the attributes of chaotic behavio
is perhaps instructive to follow this link by attempting to u
the features of the negative SSNs as a diagnostic too
order to distinguish ‘‘soft’’ from ‘‘hard’’ chaos.

In order to demonstrate the feasibility of such an a
proach, we show Poincare´ plots ~Fig. 9! for typical chaotic
trajectories corresponding to different values of the anis
ropy parameter~A52.5, 2.8, 3.5, and 5! and examine the
negative portion of the SSNs obtained from the same or
~Fig. 10!. The distinct feature present in the SSNs forA
52.5 reflects the existence of large regions of regular mot
apparent in the Poincare´ plot. As the value of the anisotrop
increases, the feature becomes progressively less

as
t

FIG. 9. Stroboscopic plots for various values of the anisotropy parameter:~a! A52.5, ~b! A52.8, ~c! A54.0, and~d! A55.0.
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FIG. 10. SSNs for the same trajectories as in Fig. 9; the distinct feature present in the upper left portion reflects the existenc
regions of regular motion apparent in the Poincare´ plot. As the value of the anisotropy increases, the feature becomes progressive
pronounced; atA55, as the stroboscopic plot shows fully developed chaos, all structure has disappeared from the spectrum of
SSNs.
e-
pe

os

s is
al
de-
nounced; atA55, as the stroboscopic plot shows fully d
veloped chaos, there is no structure whatsoever in the s
trum of negative SSNs.

The possibility of exploring order-within-chaos scenari
s.

.

c-
by looking at the spectrum of negative stretching number
an intriguing one. Clearly, this would only be of practic
interest if successfully generalized to systems with more
grees of freedom.
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