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Lyapunov exponent, stretching numbers, and islands of stability of the kicked top
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The Lyapunov exponent of the kicked top is evaluated as a function of the anisotropy parameter for a special
value of the magnetic field/2). A series of “wiggles” is found, which coincides with the stabilization of the
(Larmor 4-cycle. The presence of islands of stability around of the 4-cycle is associated with distinct defor-
mations of the unstable manifold and a concomitant proliferation of negative stretching numbers; the latter are
thought to be responsible for the anomalous Lyapunov behgd8&063-651X97)02611-1

PACS numbgs): 05.45:+b, 75.10.Hk, 67.57.Lm

[. INTRODUCTION some remarks on the feasibility of using the negative part of
the SSNs as a general diagnostic tool for order-within-chaos
Any concise yet reasonably complete description of chaosituations.
in a dynamical system should, at least in principle, attempt to
distinguish between the extent and intensity of chaos, i.e, II. LYAPUNOV EXPONENT AND ISLANDS
account separately for the prevalence of chaotic over noncha- OF STABILITY
otic behavior, and the degree of the instability that charac- o ) ) o
terizes chaotic behavior. Practical attempts to quantify chaos 1he Hamiltonian of the classical kicked top is given by
rely by necessity on global measures of chaotic behavior,
such as the Kolmogorov entropy or, at best, individual NRY _
Lyapunov exponentéLEs). Such measures are generically : AJZ+BJX§n: ot=n). @
incomplete in an “order-within-chaos” situation: Whereas a
long-time probe of nonlinear dynamics will in general re- whereA is the anisotropy anB the magnetic field, acting in
spond to the existence of some atypical feature in an othebursts separated by one time unit. The dynamics of the unit
wise chaotic regime, it cannatpriori be used to identify its angular momentum vectoi, determined by
nature(e.g., island of stability and sticky orbitLocal mea-
sures of chaos on the other hand, are potentially very pow-

erful tools, probing dynamical behavior in phase space and dJ_ = dH
. . . ) . —=—JX—, (2.2
allowing for a detailed analysis of atypical behavior. dt 93

The kicked top offers a unique opportunity to explore the
complementary nature of global vs local measures of chao
At a special value of the magnetic fiel® € 7/2) the com-
peting dynamics of Larmor precessi@ueriod 4 around the
X axis vs free rotation around the axis (dictated by the

Yeads to the discrete map

Ji 1 =Jncog AT, ) —Jsin(A, ;) cosB

anisotropy give rise to an order-within-chaos scenario; is- +J%sin(AJ%, ;)sinB, (2.3
lands of stability for a “Larmor” 4-cycle develop for such
values where the anisotropy parameter is “in tune” with the Y. =i z y z

. X =J,sin(AJ +J/cogAJ cosB
magnetic field. The global probé.yapunov exponentis n+1 = InSINAT 1) + JnCOS ATy )
found to react to the existence of such islands, via small —JZcog AJZ, ;)sSinB, (2.9
“wiggles.” In order to investigate the nature of the relation-
ship between islands of stability and anomalies in chaotic 2 = JVsinB + JicosB, 2.5

behavior, we have made use of local profssetching num-

bers(SN9 and their spectraSSN3 [1]]. Our findings sug- - . _ . . .
gest that it is possible to identify distinct areas of the un-WhereJy is the spin vector immediately prior to timéh kick.
stable manifold that exhibit negative stretching numbers, i.e.] '€ Symmetries and periodic orbits of the m@i3)—(2.5)
locally nonchaotic behavior; these areas typically surround’@ve been studied extensivel,3]. In this section we will
an island of stability and underlie the appearance of th&°mpute, numerically and analytically, ttimaximum LE

wiggles. and study its dependence on the presence of islands of sta-
This paper is organized as follows. Section Il presents th@lItY- _ _
model and the calculatiomumerical and theoreticabf the The tangent map corresponding to E¢8.3—(2.9 is

LE. Section IIl deals with the spectra of stretching numbergiven by

and their relationship to the islands of stability, whereas Sec. . ..

IV discusses the relationship of the spatial distribution of 8Jni1=M(J,)8d,, (2.6)
(negative SNs to the structure of the unstable manifold. Sec-

tion V presents a brief discussion of our findings, along withwhere
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FIG. 1. (Maximum) Lyapunov exponent as a function of the ) ) ) )
anisotropy parameter for the kicked tof®= 7/2 has been used FIG. 2. Stroboscopic plot of a typical chaotic trajector (
throughout the papgrThe dotted line is the high-approximation =6.05); also shown are trajectories that correspond to an island of
described in the text. stability around a 4-cycle.
- which is valid for largeA and any finiteB and follows in a
M(j )= n+1 2.7 straightforward fashion from thdtangent map in polar
n 55 ' form. Introducing the approximatiof2.11) in Eq. (2.10, we
n

obtain

The largest positive LEwhich in our system is equal to

the Kolmogorov entropyis given b -
g Pyis g Y A(A,B)~In(AsinB)—1, (2.12

A+ (A,B)=In[ lim |j . (N)|*N], (2.8

N— o0

displayed as a straight line in Fig. 1. What the approximation
(2.12 [or its “parent” versions(2.10 and (2.11)] cannot
wherej , E N) is the largest eigenvalue of the matrix product gﬁg\% e?jriuw?&_zl)l_g% eir;dg;“ggeiﬁ'\?gslﬁgagdtgi Ct(l)r:Seid er-
ITN_;M(Jy). In practice we have used~10° and obtained ing the stability of the periodic orbits of the mappit@;3)—

the LEs with an accuracy of 10, using standard procedures (2.5). The crucial orbit(for B= /2, which will be assumed
(cf. [4]). We are interested in the fully chaotic regime, for in the rest of the papgis a 4-cycle consisting of the points
B=/2 and A>1. Chaotic regions are characterized by a

single LE. The dependence &f. on A is shown in Fig. 1.

The result can be compared with a rough analytical estimate, 0 0 0 0

which is obtained as follow&f. the analogous arguments by jw—| o 5(24>: 1 jw_| o

Chirikov [5] on the kicked rotator 1 ,

For orbits that are strongly chaotic, it turns out that 1 0 -1 (2013)
1 N
A (AB)=lim — > Injui(3,)], (2.9  (for all A). The 4-cycle is stable if
N— o n=1
(2 COA+A sinA)?—4<0. (2.149

whereu . is the largest eigenvalue of E.7), is a reason-
able approximation to Eq2.8). On the basis of the ergodic . _ . ). o
hypothesis, we may further substitute the time average in E¢./9uré 2 exhibits the island of stability aroundf”; Fig. 3

(2.9 with the ensemble average over the whole sphere, shows the first few wiggles in some more detail, along with
the regions of stability of the 4-cycle, as defined by Eq.

_ 1 1 om (2.14. It can be seen that the regions of stability of the

)\T(A,B):— f dpf deé Inju(p,¢;A,B)], 4-cycle coincide with position of dips in the LE; thus the

4m )1 0 stabilization of a particular periodic orbit appears to be re-
(2.10 sponsible for the decrease in the strength of the instability

(i.e., the LB of the typical chaotic trajectory. The kicked top

wherep=J,/J and ¢=arctan{,/J,) are the canonical coor- thus offers a unique opportunity to investigate an order-
dinates of our system. Finally, we make use of the approxiwithin-chaos scenario. In the next section, the more quanti-

mation tative aspects of the phenomena related to the appearance of
stability islands will be examined with the help of the spec-
w4 (p,d;A,B)~A1—p?cospsing, (2.1)  trum of stretching numberd].
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FIG. 3. Lyapunov exponent and stability regions of the 4-cycle.
FIG. 4. Spectrum of stretching numbers for a typical regular
(left) and chaotic(right) orbit. The corresponding values of the
lll. SPECTRUM OF STRETCHING NUMBERS anisotropy are shown in the boxes.
AND ISLANDS OF STABILITY

Lyapunov exponents, due to their emphasis on theroduced as an orbit evolves is known as the spectrum of
infinite-time behavior, overlook useful dynamical informa- stretching numbersl]. An important property of the SSNs is
tion on the varying time scales and the distinct regions othat the spectrum produced by a single orbit is invariant, i.e.,
phase space. For this reason, various grddgg—13 have independent of the orbit's starting point; furthermore, it has
studied local Lyapunov exponents and their spectra. In théeen shown 1] that orbits belonging to the same chaotic
case of mappings, local Lyapunov exponents, defined as thegion have the same SSNs, as is the case with the LEs.
deviation of two neighboring orbits in a single iteration, are In terms of the tangent mafEq. (2.6)], the stretching
also known as stretching numbers, whereas the spectrumumber is given as

8J
ap:1=In | nfl| (3.1
|63

AZ[1—(J¥)2](8I¥)2+ 2A[ JZ6IX— IX 8321 89",

- : (3.2
|63,/

where in Eq(3.2) we have made use &= 7/2. It should be The LE is the first moment of the SSNs, = [da a S(«).

noted that in practice one rescales the norm of the vetpr ~ TYpical spectra for regular and chaotic orbits are shown in
after each iteration to the original vaILh|é3 I. Since the Fig. 4. The numerical computations were performed with
e N=10° and Sa=0.001. Computations with differeni
map and the tangent map conserve the prodycdJ,, the  andjor s produced the same spectra, providéds suffi-
rescaling has the effect that, even if we start withJg that  ciently large &10°) and da sufficiently small &0.01). It
has a component perpendicular to the sphere, this componestiould be noted that the chaotic orbit used to generate the
will disappear after a few iterations. right spectrum of Fig. 4 A=5) occupied essentially all
The sequence of SN&,.}, n=1,... N, of lengthN can  phase space, i.e., the islands of stability are not visible. The
be characterized by its spectrum.dN(«) is the number of generic feature of SSNs obtained from chaotic orbits is the
SNs whose values lie in the interval (a + Sa), the SSNsis monotonically increasing trend as the valuemincreases;
defined as there is no large peak at negative valuesxadnd of course
no reflection symmetrywhich would produce a zero first
momenj. Nonetheless, it will be seen that not all chaotic
SN SSNs are entirely structureless in their lgfegativea) por-
_ (a) > o
S(a)= lim <_) (3.3  tion; islands of stability do leave a detectable mark. In order
N oo to see this more clearly, we first present a detailed profile of

N—o
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FIG. 5. Deviation of the LE vs anisotropy in the vicinity of the FIG. 7. Structure of the unstable manifold prior teft, A
stability region(shadedl of a 4-cycle[as defined by Eq2.14)]. =5.5 and after A=6.05) the stabilization of the 4-cycle. Also
shown in the right portion are typical regular trajectories around the
4-cycle.

a wiggle; Fig. 5 exhibits the dependence of the Lyapunov

exponent on the anisotropy ne&tm=2. In order to obtain a

higher accuracy, this calculation has been performed witoverall measure of chaos, the Lyapunov exponent,(@&nih
N=5x 1P iterations. The decrease »f. sets on aA=5.85 an observable anomaly in the negative part of the SSNs.
and a local minimum appears At=6.05. We have obtained

the SSNs for values of th_e an_isotropy parameter closertq 2 V. STRETCHING NUMBERS AND THE STRUCTURE

T_he results are _shown in Flg_. 6. Because the scale is so OF THE UNSTABLE MANIFOLD

different for positive and negative valuesafwe have plot-

ted the salient features in the negative and positive axes sepa- In this section we wish to pursue the relationship between
rately. The point to note is that the local minimum f islands of stability and negative SSNs anomalies by examin-
corresponds to the distinct peak in the negative region of thing the structural characteristics of the latter. It is well known

SSNs(and a concomitant dip in the positive regiom other  that whatever the direction of the initial separatiéd, of
words, even chaotic orbits may exhibfitveakly) “struc-  two neighboring chaotic orbits, after a few iterations it be-
tured” SSNs on the negative side if the parameters alloweomes virtually identical to the direction of the unstable
some regular motion. The presence of islands of stability isnanifold of the unstable fixed point. It follows from Eq.
thus reflected in chaotic orbits in a dual fashig:in the  (3.2) that the value ofx at the point that the orbit reaches on
thenth iteration depends on the position of the point in phase

space and on the direction of the difference veczf(iq in
tangent space, which after a few iterations coincides with the
direction of the unstable manifold of the map’s unstable
fixed points(J,==*1, J,=J,=0) at that point. As the value
of A varies, the spectrur(«) changes in response to the
changes that occur in the unstable manifold. This picture is
supported by Fig. 7, which illustrates the structure of the
unstable manifold prior to the appearance of stability islands
(A=5.5, Fig. 7, leff and shortly thereafteiA=6.05, Fig. 7,
11 right). The appearance of stability islands around the point of
periodic orbit results in an unstable manifold, which, above
and below the stability island, is essentially parallel toipe
axis. This allows the second term in the second set of large
: | . , 0 curly brackets of Eq(3.2) to dominate and favors, locally,
20 -18 -16 -14 1.6 o 1.8 the buildup of negative stretching numbers. The sudden ap-
@ pearance of such regions results in the steep rise of negative
FIG. 6. Spectrum of stretching numbers for a number of vaIuesSSNSf peaks against the exponentially vanishing background
near the stability region of the 4-cycle. Note that ¥haxis has been (cf. F_'g; 6, Iemj L )
split in order to emphasize details of positive Shight portion, It is interesting to observe this in some detail, by follow-
where most of the contribution to the L(irst moment originateg ~ INg the topography of stretching numbers. In Fig. 8, right, we
vs negative SNeft portion, where the traces of nonchaotic behav- have plotted the points of a chaotic orffitlr A=6.05, i.e., at
ior are more explicit; note, however, the difference of two orders ofthe local minimum of the Lyapunov expongrthat corre-
magnitude in they scald. The area curves belong, respectively, to spond to stretching numbess< —1.775. In other words, we
A=5.0 (blacK, 5.85(gray), and 5.0(light gray). have identified the phase-space origin of the points that con-
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far from the stability islands; the chaotic orbit has no diffi-

culty in passing through them, i.e., there is no complex struc-
ture in them, e.g., cantori or other stability islands, which
might cause sticking effects and a delay of the orbit.

V. DISCUSSION AND CONCLUDING REMARKS

We have presented a model situation of an order-within-
chaos scenario for the kicked top and analyzed the underly-
ing nonlinear dynamics in terms of the anomalies in the
Lyapunov exponent and the spectrum of negative stretching
numbers. The detailed topography of the spectrum reveals a
direct connection between the occurrence of islands of sta-
bility corresponding to periodic orbits, deformations in the
structure of the unstable manifold of the parent unstable
fixed point, and the local proliferation of negative stretching
numbers.

FIG. 8. Topography of the SSNs. The anisotropy parameter is as Our results suggest that the presence of ordered regions
in Fig. 7. Shown at the right are all points of a given trajectory that(stability island$ within an otherwise chaotic environment
are characterized by SNs lower thanl.775; also shown is the has a direct influence on the attributes of chaotic behavior. It

stability region of the 4-cycle. At the leftvhere the 4-cycle is still

is perhaps instructive to follow this link by attempting to use

unstablg, all points of a given trajectory with negative SNs are the features of the negative SSNs as a diagnostic tool, in

shown.

order to distinguish “soft” from “hard” chaos.
In order to demonstrate the feasibility of such an ap-
proach, we show Poincaggots (Fig. 9 for typical chaotic

tribute to the negative SSNs peak. This should be compareiajectories corresponding to different values of the anisot-
with Fig. 8, left, which contains all points of a chaotic orbit ropy parametefA=2.5, 2.8, 3.5, and )5and examine the

with negative stretching numbers, obtained £o£ 5.5 (i.e.,

before the appearance of the stability island
It should be noted that the regions of phase space that2.5 reflects the existence of large regions of regular motion

give rise to the negative SSNihe “Napoleon hats” in Fig.
8, right, above and below the stability islandre relatively
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negative portion of the SSNs obtained from the same orbits
(Fig. 10. The distinct feature present in the SSNs for

apparent in the Poincagdot. As the value of the anisotropy
increases, the feature becomes progressively less pro-

FIG. 9. Stroboscopic plots for various values of the anisotropy paramet@rA=2.5, (b) A=2.8,(c) A=4.0, and(d) A=5.0.
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FIG. 10. SSNs for the same trajectories as in Fig. 9; the distinct feature present in the upper left portion reflects the existence of large
regions of regular motion apparent in the Poincai@. As the value of the anisotropy increases, the feature becomes progressively less
pronounced; aA=5, as the stroboscopic plot shows fully developed chaos, all structure has disappeared from the spectrum of negative

SSNs.

nounced; atA=>5, as the stroboscopic plot shows fully de- by looking at the spectrum of negative stretching numbers is
veloped chaos, there is no structure whatsoever in the spean intriguing one. Clearly, this would only be of practical
trum of negative SSNs. interest if successfully generalized to systems with more de-

The possibility of exploring order-within-chaos scenariosgrees of freedom.

[1] N. Voglis and G. J. Contopoulos, J. Phys2& 4899(1994. [7] C. Amitrano and R. S. Berry, Phys. Rev.4%, 3158(1993.

[2] F. Haake, M. Kisand R. Scharf, Z. Phys. B5, 381(1987. [8] P. Grassberger, R. Badii, and A. Politi, J. Stat. PiBis.135
[3] G. M. D'Ariano, L. A. Evangelista, and M. Saraceno, Phys. (1988.
Rev. A 45, 3646(1992. [9] H. Fujisaka, Prog. Theor. Phyg0, 1264(1983

[4] G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Revi4\  [10] G. Haubs and H. Haken, Z. Phys.99, 459 (1985.
2338(1976; G. Benettin, L. Galgani, A. Giorgilli, and J.-M. [11] M. A. Sepulveda, R. Badii, and E. Pollak, Phys. Rev. L&8.

Strelcyn, Meccanicd5, 9 (1980; A. Wolf, J. B. Swift, H. L. 1226(1989.
Swinney, and J. A. Vastano, PhysicalB, 285 (1985. [12] D. J. Wales and R. S. Berry, J. Phys2B, L351(1991)).
[5] B. Chiricov, Phys. Rep52, 263(1972. [13] H. D. I. Abarbanel, R. Brown, and M. B. Kennel, J. Nonlinear

[6] B. Eckhardt and D. Yao, Physica &b, 100(1993. Sci. 1, 175(1991).



